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Abstract: A largely unexplored application of “Big Data” in urban contexts is using human 
mobility data to study temporal heterogeneity in intercity travel networks. Hence, this paper 
explores China’s intercity travel patterns and their dynamics, with a comparison between 
weekdays and holidays, to contribute to our understanding of these phenomena. Using pas-
senger travel data inferred from Tencent Location Big Data during weekdays (April 11–15, 
2016) and National Golden Week (October 1–7, 2016), we compare the spatial patterns of 
Chinese intercity travel on weekdays and during Golden Week. The results show that the 
average daily intercity travel during Golden Week is significantly higher than that during 
weekdays, but the travel distance and degree of network clustering are significantly lower. 
This indicates temporal heterogeneity in mapping the intercity travel network. On weekdays, 
the three major cities of Beijing, Shanghai, and Guangzhou take prominent core positions, 
while cities that are tourism destinations or transportation hubs are more attractive during 
Golden Week. The reasons behind these findings can be explained by geographical proximity, 
administrative division (proximity of cultural and policy systems), travel distance, and travel 
purposes. 

Keywords: big data; weekdays; National Golden Week; human mobility; travel time heterogeneity; China 

1  Introduction 

Human mobility has been a key concept in geography, transport, and regional planning. 
Measuring and analyzing the flows of travelers at different scales (spatial and temporal) is a 
major topic in the mobility literature (Jin et al., 2018). Increasing mobility and intercity 
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travel can be expected to lead to economic and social benefits, but also to negative environ-
mental consequences (Limtanakool et al., 2006; Dargay and Clark, 2012). While intercity 
travel may strengthen the connections between different regions and provide better access to 
public services and social connections, it can also involve increased energy consumption and 
the emission of pollutants, leading to negative environmental impacts (Limtanakool et al., 
2005; Arbués et al., 2016). Aultman-Hall and Ullman (2020) stated that “truly understanding 
mobility in our global society requires inclusion of long-distance intercity travel”. Therefore, 
understanding patterns of intercity travel is of importance for the development of transport 
infrastructure and making mobility sustainable. 

The time-space compression brought by the development of high-speed transport net-
works and ICT as well as the continuous regional integration largely promotes the expansion 
of human activity space in China (Kuhnimhof et al., 2009; Jia et al., 2018). On the other 
hand, with the improvement of residents’ income level and the change of consumption 
structure, long-distance travel demand is also gradually increasing. As a result, human mo-
bility has experienced a significant increase in terms of vehicle-kilometers travelled in China. 
In such a case, the number of people travelling between cities is increasing. In this study, 
this type of travel is referred to as intercity travel. 

With the increasing focus on questions of regional integration and long-distance mobility, 
there is a growing body of literature on medium- and long-distance travel and intercity travel 
(Limtanakool et al., 2005; Wang and Jin, 2007; Arbués et al., 2016; Wang et al., 2020). Dif-
ferences in travel periods and travel time availability have a strong effect on intercity travel 
and can lead to heterogeneity in intercity travel patterns. The patterns of travel on weekdays 
and holidays have completely different attributes, and the reasons for people traveling on 
different days are quite different. Therefore, it is helpful to compare intercity travel in these 
two periods to fully understand the patterns involved. However, most previous studies have 
focused on the spatial dimension of intercity travel and have paid little attention to the tem-
poral dimension, specifically temporal heterogeneity in intercity travel. Exceptions are the 
studies by Neal (2014) and Jin et al. (2018). Neal (2014) used air-traffic data to differentiate 
air-traffic networks in summer and winter. Although this distinction between the seasons 
revealed different structural varieties in air traffic and the spatial organization of cities, the 
study only examined the intercity air-traffic network at the season level, thus largely ignor-
ing other temporal scales such as the differences between weekdays and holidays. More re-
cently, Jin et al. (2018) used user-generated content data to analyze tourist-flow networks for 
different lengths of trip on the intracity scale. However, they did not explore travel flows by 
general population at the intercity scale. 

This paper aims to explore temporal heterogeneity by comparing the differences in inter-
city travel patterns between weekdays and National Golden Week. To this end, we applied 
network analysis methods and used migration data obtained from the website of Tencent 
Location Big Data to conduct this study. The results have important implications for trans-
port infrastructure planning and regional studies. 

The remainder of this paper is organized as follows. Section 2 reviews the literature on 
intercity travel. Section 3 briefly describes the data and methodology for modeling intercity 
travel. Subsequently, we present and discuss the empirical results in Sections 4 and 5. Fi-
nally, we present an overview of our key findings in Section 6. 
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2  Literature review 

2.1  Long-distance and intercity travel 

The terms “long-distance travel” and “intercity travel” are usually used interchangeably and 
long-distance is generally defined on the basis of a physical distance threshold (Arbués et al., 
2016). According to the literature, long-distance trips are traditionally defined as being 
longer than a threshold between 50 km and 100 km (Kuhnimhof et al., 2009; Dargay and 
Clark, 2012). To avoid arbitrariness in the selection of this threshold, we use intercity travel, 
which refers to trips between cities, as our analytic object in this study. 

At present, the existing literature on intercity travel can be divided into two categories. 
Firstly, there are those that mainly focus on the question of intercity travel per se. For exam-
ple, Limtanakool et al. (2006) used DATELINE, a European long-distance mobility database, 
to examine the patterns of interaction between functional urban areas in France and Ger-
many. De Montis et al. (2010) analyzed inter-municipal commuting systems in the Italian 
islands, including Sardinia and Sicily. A better understanding of the determinants of intercity 
travel can improve the performance of intercity transport systems and inform sustainable 
planning. As a result, secondly, a growing number of studies are examining the determinants 
of the choice of intercity travel mode. Socio-demographic factors (Limtanakool et al., 2006; 
Kuhnimhof et al., 2012; Yang et al., 2018), spatial configuration factors (Limtanakool et al., 
2005; Garmendia et al., 2011; De Witte et al., 2013; Anne and Laurent, 2015), and trip 
characteristics (Buehler, 2011; Moeckel et al., 2015; Ye et al., 2018) all have important im-
pacts on mode selection in intercity travel. However, compared to the rich literature on 
short-distance or inner-city travel studies, there have been relatively few studies on intercity 
travel. 

As one of the key aspects of “the space of flows”, intercity travel is particularly important 
in studies of urban networks. The main aim of these studies is to uncover patterns of urban 
networks through the lens of intercity travel. Using air-passenger-flow data, Neal (2014) 
differentiated air-traffic networks using the dimensions of scale, species, and season. De-
rudder et al. (2014) evaluated the intercity connectivity of South Asian cities based on their 
infrastructure networks. In China, a great deal of the existing literature has analyzed the 
functional relationships within urban systems based on time-schedule and passenger-flow 
data from airlines, high-speed railways (HSR), conventional railways, and coaches. For in-
stance, Luo (2010) and Feng et al. (2014) evaluated the polycentricity of the Yangzi River 
Delta and the Pearl River Delta, respectively, based on HSR schedule data. Intercity travel 
with different modes of transportation (air, train, and coach) can reveal urban networks on 
different spatial scales and across regions. Some studies have also compared the urban rela-
tionships reflected by different intercity travel modes (Chen et al., 2015; Wang and Jing, 
2017). For example, using 2013 origin/destination passenger-flow data, Yang et al. (2018) 
compared the spatial configurations of Chinese national urban systems in terms of both HSR 
and airline networks. Wang et al. (2020) used timetable data for HSR and coaches to com-
pare the spatial patterns of intercity connections in these two modes. 

Previous studies of intercity travel have rarely addressed its temporal heterogeneity. Dif-
ferences in the travel period and travel time availability have a strong effect on intercity 
travel patterns. “Big Data” sources offer new opportunities for analysis of the temporal 
heterogeneity of intercity travel patterns. 
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erogeneity of intercity travel patterns. 

2.2  Big data in intercity travel studies 

In this era of Big Data, geo-referenced data has increasingly attracted interest from scholars 
and has been widely used in geographical research (Liu et al., 2014; Yuan et al., 2020; 
Zhang et al., 2020). With respect to various data sources from location-based services on 
human mobility, Tencent and Baidu have been found to be more accurate than other sources 
(Li et al., 2016). Recent studies on intercity travel have started to introduce this kind of data 
in their analyses. Using migration data from Tencent Location and Baidu Location Big Data, 
many studies have explored the spatial patterns of population flow networks during the 
Chinese Spring Festival (Liu and Shi, 2016; Wei et al., 2016). Xu et al. (2017) used Tencent 
Location Big Data to analyze unbalanced population migration between cities and uncover 
spatial differences in urban development during Chinese Spring Festival. Later, Pan and Lai 
(2019) used the same data as Xu et al. (2017) to explore the spatial patterns of daily flow 
mobility during the National Day and Mid-Autumn Festival in China. Additionally, so-
cial-network data containing location information, such as check-in data from Twitter, 
Foursquare, and Sina, is also valuable for examining patterns in human mobility. Liu et al. 
(2014) analyzed spatial patterns in intercity trips and distance decay in China based on so-
cial-media check-in data. Zhang et al. (2020) used location-based social media to map the 
spatial patterns of intercity travel in the Yangtze River Delta of China. Compared with tradi-
tional data (questionnaires, sampling, and census data), geo-referenced big data can provide 
real time information about the dynamic movements of people, allowing exploration of 
temporal heterogeneity in intercity travel patterns. 

To the best of our knowledge, relatively few studies have compared intercity travel during 
different periods in one area using the same type of passenger-flow data. Our research tries 
to fill this gap by using human mobility data released by Tencent for weekdays and holidays 
within the national urban system of China. 

3  Data and methodology 

3.1  Data sources 

Passenger intercity travel data from weekdays (April 11–15, 2016) and during National 
Golden Week (October 1–7, 2016) from the Tencent Location Big Data platform were em-
ployed in this study. The data encompasses 362 cities, including 293 prefecture-level cities, 
four municipalities, and 65 county-level cities in mainland China. Passenger intercity travel 
data from Tencent Location Big Data provides the top-ten inflow and outflow records for 
each city. Additional passenger inflow (outflow) records can be appropriately supplemented 
by the outflow (inflow) records of other cities to establish intercity travel patterns. This data 
has been applied to reveal the characteristics of China’s urban development during the 
Spring Festival period (Xu et al., 2017). 

It should be noted that the Tencent platform provides a relative passenger intercity travel 
volume, not an absolute volume value. In fact, the relative index of the passenger travel data 
is better than the attributes reflected by the absolute volume when using Big Data to study 
the characteristics of residents’ travel (Yuan et al., 2020). Tencent’s passenger intercity tra-
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travel-flow data is based on daily statistics, which can cover most of the users’ long-distance 
and short-distance travel behaviors. To a certain extent, it avoids underestimation of long- 
distance travel data and false increases in short-distance travel data. On this basis, a directed, 
weighted intercity population travel matrix with cities as nodes and population flow as edges 
was constructed. The scale of the average daily travel volume of Chinese residents during 
Golden Week is basically more than twice that of weekdays (Table 1) and is mainly charac-
terized by relative short-distance travel from a core city to its surrounding cities, while 
weekdays are mainly characterized by long-distance travel (Figure 1). 
 

Table 1  Descriptive statistics of intercity travel networks for weekdays and Golden Week 

Periods 
Number  
of nodes 

Number  
of edges 

Total linked 
value 

Average Maximum Minimum CV 

Weekdays 362 8430 34 817 749 4130 191 590 7 2.22 

Golden Week 362 8588 72 681 843 8463 263 724 7 1.94 

 

 
 

Figure 1  Differences in intercity travel networks between weekdays and Golden Week 
 

3.2  Methodology 

3.2.1  City centrality 

To reveal the centrality of cities in the network, this paper selects two indexes: the weighted 
degree centrality index (WDC) and the city weighted dominance index (DIT). These two 
indexes are calculated as follows (Jiao et al., 2016; Yang et al., 2018): 
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where Ti is the sum of passenger inflow and outflow of city i (i≠j), Di is the degree value of 
city i, which is equal to the sum of the outdegree and indegree of that city, and α is the coef-
ficient parameter, which in this paper is 0.5 following Jiao et al. (2016). The parameter 
WDCi indicates the absolute strength of city i in the network; the larger its value, the higher 
the absolute strength of the city in the entire network. The parameter DITi indicates the rela-
tive strength of city i, and this can be used to illustrate the relative dominance of each city in 
the entire intercity travel network; the higher the value of this parameter, the stronger the 
relative dominance of city i, and when its value is greater than 1, the city’s dominance is 
greater than the average of the other cities in the network. 

To reveal hierarchical structure in the network as a whole, the city equilibrium degree co-
efficient ODIc indicating the extent to which the total interaction in distributed evenly across 
all cities in the network. The value of ODIc is calculated as follows (Yang et al., 2018): 
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where Zi represents the proportion of the sum of the edge strengths associated with city i as 
compared to the sum of the edge strengths associated with all cities in the network, I is the 
number of cities in the network, and 0≤ODIc≤1. When ODIc=0, this indicates the greatest 
hierarchical differential, and this index can be used to illustrate the differences between cit-
ies in the entire intercity travel network. 

3.2.2  Link connectivity 

The intercity travel link connectivity refers to the connectivity of a city pair, indicating the 
relative strength of a link (RSL) in the network, and this can be calculated according to Yang 
et al. (2018)  
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where tij is the total number of passengers travelling between city i and city j (i ≠ j). The 
parameter RSLij represents the relative strength of a link, which indicates the proportion of a 
certain city’s connection strength as a fraction of the total connection strength of the whole 
travel network, and 0≤RSLij≤1. The closer this value is to 1, the higher the correlation ratio 
between city i and city j and the greater the dominance of the link. Since some of the values 
of this parameter will be rather small, to clearly understand their strength values, the RSLij 
value is multiplied by 1000. 

3.2.3  Community structure mining and visualization model 

Considering that this study constructs a directed weighted network and the network data 
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represents the actual intercity relationship flows, this paper adopts the Infomap algorithm, as 
proposed by Rosvall and Bergstrom (2008) to identify the community structure. This method 
comprehensively considers topological attributes such as node weight, connection edge 
weight, and connection direction during the process of community mining and has been well 
applied in mining network community structures with actual flow interactions. To intuitively 
examine the characteristics of changes in intercity travel network groups between the two 
periods, this paper uses the alluvial diagram proposed by Rosvall and Bergstrom (2008) to 
carry out visual comparisons of network groups, and the group mining and the drawing of 
the alluvial diagram are completed by means of the Map Equation software package 
(http://www.mapequation.org/). 

3.2.4  City role recognition model 

Exploring the role of each city is of particular importance in a large network. In this paper, 
the within-module degree and participation coefficient proposed by Guimerà and Amaral 
(2005) are adopted to identify the role of each city in the intercity travel network based on 
the characteristic that cities with the same role should have similar topological properties. 
The basic principle of this method is that the role of a city can be determined through a 
comparison between its own module and other modules. The specific steps are as follows. (1) 
Calculate the within-module degree (zi) of the city within its affiliated module; the larger the 
value of zi, the higher the weighted degree centrality of the city within the module, and vice 
versa. (2) Calculate the external connectivity between the city and each group (including the 
affiliated group) city, which can be called the participation coefficient (Pi) and represents the 
distribution equilibrium level of the connectivity associated with city i, and 0≤Pi≤1; the 
closer Pi is to 1, the more that connections directly related to city i tend to be evenly distrib-
uted in each group, and vice versa. (3) Visualize Pi and zi as the abscissa and ordinate of a 
graph, respectively, determine a critical value based on the actual distribution of data, and 
then classify the city roles (Figure 2). The formulae for calculating the within-module degree 
(zi) and participation coefficient (Pi) are given below: 

 ,i

Si

i S
i

K

K K
z




  (5) 

 
2

1

1 ,
MN

iS
i

S i

K
P

k

 
   

 
  (6) 

where Ki is the weighted degree of centrality of city i in its group Si, 
iSK  is the average of 

Ki over all cities in Si, 
Si

K  is the standard deviation of Ki in Si, KiS is the weighted degree 

of centrality of city i associated with each group S, ki is the weighted degree of centrality of 
city i in the whole network, and NM is the number of groups. 

4  Hierarchical structure and spatial patterns of intercity travel network 

4.1  City nodes 

4.1.1  Hierarchical size structure 

In general, the travel size in Golden Week was higher than those on weekdays. The average  
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degree values on weekdays and during 
Golden Week were 44.8 and 45.7, re-
spectively. Without considering their 
weight, the average number of directly 
related cities associated with each city 
was nearly equal. The average values 
of the weighted degree in the two pe-
riods were 185 200 and 386 605, re-
spectively. Meanwhile, the average 
value of DITi also increased from 3.91 
on weekdays to 5.09 during Golden 
Week. That is to say, the travel size 
during Golden Week was significantly 
higher than that on weekdays. 

Figure 3 presents the rank-size dis-
tribution fitting analyses based on 

each city’s WDCi value for the three regions and the whole of China for the two periods. The 
fitting parameters are also summarized in Table 2 below. The distributions of cities’ WDCi 
values in the two periods generally presented a typical Pareto distribution pattern, with a 
Zipf value above 1. Specifically, the ODIc values on weekdays and during Golden Week 
were 0.84 and 0.88, respectively. Although the overall distribution was relatively balanced, 
the rank-size distributions of WDCi values in Golden Week tended to be flatter. The value of 
goodness of fit on weekdays and during Golden Week were 0.64 and 0.82, respectively, in-
dicating that the hierarchical organization of China’s intercity travel network based on pas-
senger intercity travel data conformed to a rank-size distribution. During Golden Week, with 
the general increase in the frequency and scale of travel, the differences among the three 
regions were significantly reduced. This may be caused by the massive increase in leisure, 
and family-visiting flows during Golden Week. According to statistics from the China Na-
tional Tourism Administration, 593 million tourists were received during the National Day 
Golden Week in 2016. Increased numbers of intercity trips generated by the increase in lei-
sure time and income were reflected in the three major regions as well as the whole country. 
The goodness of fit within the three regions was above 0.7, which is also consistent with the 
rank-size distribution. 

 

Table 2  Statistical characteristics of intercity travel network for weekdays and Golden Week 

Region Period Zipf R2 WDCi DITi ODIc 

Weekdays 1.1378 0.8205 185 200 3.91 0.84 
Whole country 

Golden Week 1.0988 0.6418 386 605 5.09 0.88 

Weekdays 1.2663 0.8494 305 006 6.48 0.80 
Eastern China 

Golden Week 1.1219 0.7443 581 193 7.67 0.85 

Weekdays 0.8950 0.8172 130 740 2.72 0.89 
Central China 

Golden Week 0.8503 0.8125 322 530 4.21 0.91 

Weekdays 1.1941 0.7860 126 287 2.65 0.79 
Western China 

Golden Week 1.2662 0.7458 265 015 3.47 0.83 

 
 

Figure 2  Diagram of city roles based on the method of the 
intra–inter group importance parameter 
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Figure 3  Rank-size distribution of WDCi of intercity travel network for weekdays and Golden Week 

 

4.1.2  Spatial patterns 

Figure 4 maps the DITi values for the two periods and the absolute changes between the two 
periods to identify the geography of city centrality. Table 3 lists the top-20 dominant cities 
with high DITi values for the two periods and the top-20 absolute changes in DITi value. 

The “space–time compression” effect brought about by high-speed transport development 
plays an important role in expanding travel distances and activity spaces. The regions with 
high DITi values were mainly concentrated along HSR corridors in urban agglomerations, 
including the Beijing–Shanghai line in the Yangtze River Delta, Beijing–Tianjin–Hebei, the 
Guangzhou–Shenzhen line in the Pearl River Delta, and the Qingdao–Jinan line in the 
Shandong Peninsula area. Specifically, the top-six cities in the two periods were the same: 
Beijing, Shanghai, Shenzhen, Guangzhou, Chongqing, and Chengdu. The remaining 14 cit-
ies mainly included sub-core cities of Beijing–Tianjin–Hebei, the Yangtze River Delta, the 
Pearl River Delta, the Chengdu–Chongqing, and core cities of other urban agglomerations 
such as Tianjin, Nanjing, Hangzhou, Suzhou, Wuhan, Xi’an, and Changsha. 

With regard to the ranking changes of the cities between the two periods, apart from Bei-
jing, Shanghai, Shenzhen, Guangzhou, Zhengzhou, and Wuhan, there were obvious ranking 
changes for the other cities between weekdays and Golden Week, as shown in Table 3. 
Among them, the rankings of Chongqing and Chengdu were swapped, and Hangzhou, Xi’an, 
Suzhou, Tianjin, and Kunming significantly improved their rankings. For instance, Xi’an 
ranked 12th on weekdays, but rose to 8th in Golden Week, with tourism in Xi’an playing a 
major role. The rankings of Dongguan, Foshan, and Nanning dropped significantly. The DITi 
values for Guangzhou, Shenzhen, and Shanghai were significantly reduced, to 5.63, 5.44, 
and 3.05, respectively. The DITi value of 41 cities increased significantly, with an average 
value of absolute change of 3.96. The cities with greater improvement were concentrated in 
the peripheral areas of Beijing–Tianjin–Hebei, the Yangtze River Delta, the Pearl River 
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Delta, and the Chengdu–Chongqing, as well as the core cities in Shandong Peninsula, the 
central and southern parts of Liaoning Province, and the Harbin–Changchun urban agglom-
eration. Wuhan, Chengdu, Xi’an, and other transportation hub and tourist cities had the 
greatest improvements, with changes of 10.17, 10.06, and 8.57, respectively. 
 
Table 3  Statistical characteristics of the DITi values and their absolute changes for the two periods 

DITi Absolute change 
Rank 

Weekdays DITi Golden Week DITi Golden Week–Weekdays 

1 Beijing 100.00 Beijing 100.00 Wuhan 10.17 

2 Shanghai 78.19 Shanghai 75.13 Chengdu 10.06 

3 Shenzhen 66.88 Shenzhen 61.44 Xi’an 8.57 

4 Guangzhou 66.65 Guangzhou 61.02 Changsha 5.44 

5 Chongqing 51.30 Chengdu 54.94 Qingdao 5.42 

6 Chengdu 44.88 Chongqing 52.50 Harbin 5.31 

7 Dongguan 27.72 Hangzhou 35.20 Hefei 5.27 

8 Hangzhou 25.82 Xi’an 29.75 Nanchang 5.22 

9 Zhengzhou 25.10 Zhengzhou 28.85 Suzhou 4.59 

10 Wuhan 25.03 Wuhan 26.78 Nanjing 4.35 

11 Nanjing 22.43 Dongguan 26.39 Ganzhou 4.11 

12 Xi’an 21.18 Suzhou 25.36 Huizhou 4.07 

13 Suzhou 20.77 Changsha 23.94 Dalian 3.98 

14 Changsha 18.50 Nanjing 23.57 Zhengzhou 3.75 

15 Foshan 15.91 Tianjin 18.52 Hengyang 3.68 

16 Nanning 15.24 Foshan 17.87 Shenyang 3.64 

17 Tianjin 15.20 Kunming 16.60 Yantai 3.53 

18 Jinan 14.22 Jinan 16.59 Yancheng 3.44 

19 Kunming 13.86 Hefei 16.44 Qingyuan 3.39 

20 Guiyang 12.56 Nanning 16.30 Tianjin 3.32 

 

4.1.3  City role identification 

We calculated the within-module degree (zi) and participation coefficient (Pi) associated 
with each city in the intercity travel network. The role of each city was then identified ac-
cording to the definitions above, and these are plotted in Figure 5. The numbers of hub and 
non-hub cities in the two periods were 34, 33, 328, and 329, accounting for 9.39%, 9.12%, 
90.61%, and 90.88%, respectively. Provincial capitals and main central cities were classified 
as hub cities. On weekdays, the Pi values of 12 cities, including Beijing, Chengdu, Shanghai, 
Guangzhou, Shenzhen, Chongqing, Kunming, and Xi’an were greater than 0.75, which in-
dicates that links with these cities were relatively evenly distributed in each module. That is 
to say, these cities were not only the hub cities that belong to their respective module but 
were also national hub cities connecting with cities of other modules. The remaining 22 pro-
vincial capitals and regional central cities were classified as regional hubs. The central cities 
and provincial capital cities assume the functions of political, economic, and cultural centers 
in their respective modules, so they had high-intensity connectivity with the non-hub cities  
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in the module. During Golden Week, the Pi 
values of Beijing, Shanghai, Shenzhen, 
Chongqing, and Sanya were still greater than 
0.75. The roles of Urumqi, Nanning, Taiyuan, 
Jinan, Qingdao, Dalian, and Hefei changed 
from regional hub to local hub. This result 
suggests that intercity travel in Golden Week 
was more dispersed than on weekdays. With 
regard to non-hub cities, the number of ul-
tra-peripheral cities increased from 103 on 
weekdays to 182 in Golden Week, and their 
proportion increased from 28.45% to 50.56% 
accordingly. 

4.2  Intercity network connections 

4.2.1  Comparison of spatial patterns by  
primary linkage 

Figure 6 plots dominant flows using the pri-
mary-link strength and the number of primary 
linking cities to identify the geography of the 
dominant flows. The number of primary linking 
cities on weekdays was higher than that during 
Golden Week, but the degree of hub status as 
central cities during Golden Week was more 
prominent. The number of primary linking cit-
ies decreased from 71 on weekdays to 57 dur-
ing Golden Week, and the average numbers of 
cities linked to a primary linking city were five 
and six, respectively. Meanwhile, the numbers 
of primary linking cities with more than 10 
linked cities were 14 and 17, respectively. 
These cities mainly included Beijing, Guang-
zhou, Chengdu, Shanghai, Wuhan, Zhengzhou, 
and Shenyang. During Golden Week, four new 
cities were added, including Harbin, Lanzhou, 
Kunming, and Chongqing. The primary-link 
strength index indicates the degree of depend-
ence of each city on its primary linking city (Jin, 
2001). The average primary-link strength val-
ues on weekdays and during Golden Week were 
0.18 and 0.12, respectively. That is to say, the 
degree of agglomeration of the intercity travel network during Golden Week was lower than 
that on weekdays. This may be due to the intercity travel characteristics of holidays in 
Golden Week reducing the degree of agglomeration of the city network. Specifically, tourism  

 
 
 

Figure 4  Spatial distribution of DITi and its abso-
lute changes for weekdays and Golden Week 
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Figure 5  Division of city roles on weekdays and during Golden Week 

 

 
 

Figure 6  Spatial distribution of the dominant flows of the intercity travel network on weekdays and during 
Golden Week 

 
cities and transportation hub cities including Dali, Chengdu, Hangzhou, Kunming, Lhasa, 
Xi’an, Zhengzhou, and Wuhan increased their primary-link strength value. In contrast, the 
central cities such as Guangzhou, Shanghai, and Beijing significantly decreased their pri-
mary-link strength value. 

4.2.2  Comparison of spatial patterns by link centrality 

Figure 7 shows the four ranks of intercity travel links for the two periods. Long-distance 
intercity travel constituted the main body of the weekday travel connections, and the spatial 
coverage was higher than that during Golden Week. During the weekdays, there was a total 
of 11 first-ranked links. The core cities included Beijing, Shanghai, Guangzhou, Shenzhen, 
Chongqing, and Foshan and Dongguan within the Pearl River Delta urban agglomeration. 
There was only one first-ranked link connecting Shenzhen and Dongguan in the Pearl River 
Delta, as identified in the first rank of the intercity network of Golden Week. The intercity 
links within the Pearl River Delta appeared in the first rank of the two periods, reflecting the 
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fact that the degree of polycentricity of the Pearl River Delta was significantly higher than 
that of the other urban agglomerations. Intercity links involving long-distance inter-regional 
connections formed the main body of the second-ranked links in the two periods. There were 
20 cities involved in the weekdays in addition to cities existing in the first-ranked links, in-
cluding core cities such as Wuhan, Changsha, Nanjing, Hangzhou, Xi’an, Suzhou, and 
Changchun, as well as neighboring cities (Langfang, Baoding, Huizhou, Xianyang, and 
Guang’an). In Golden Week, the second-ranked links involved 17 cities. Some secondary 
cities such as Huanggang and Weinan appeared on this list, which may be caused by the in-
crease in the scale of tourism travel and family visits during Golden Week. As for the third- 
and fourth-ranked links, the involved area further expanded to the western and northeastern 
parts of China. There were 118 third-ranked links and 667 fourth-ranked links on weekdays, 
accounting for 1.40% and 7.90% of the total number of links, respectively. There were 130 
third-ranked links and 720 fourth-ranked links during Golden Week, accounting for 1.51% 
and 8.38% of the total number of links, respectively. 
 

 
 

Figure 7  Comparison of spatial patterns of the intercity travel network for weekdays and Golden Week 
 

To further analyze the different rankings of the links for the two periods, we compared the 
differences in link centrality values (RSLij) for the two periods by identifying the advantaged 
links (RSLij(weekdays) − RSLij(Golden Week) > 0) on weekdays and the advantaged links (RSLij(Golden 

Week) − RSLij(weekdays) > 0) during Golden Week (Figure 8). The proximity effect of the inter-
city travel network was obvious during Golden Week, and the core cities in each region were 
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mainly linked with their surrounding secondary cities. There were 2234 advantaged links on 
weekdays, forming a rhombic-shaped structure with Beijing, Shanghai, Guangzhou, Shenz-
hen, Chengdu, and Chongqing as the core cities. There was a total of 3219 advantaged links 
during Golden Week, showing a significant spatial proximity effect, and core cities in each 
region were mainly linked with neighboring secondary cities. Influenced by the differences 
in travel destination, scale, and frequency between the two periods, and in contrast to the 
characteristics of cross-regional links on weekdays, the proximity effect of the intercity 
travel network during Golden Week was obvious, forming a core–periphery mode, with pro-
vincial capital cities and their surrounding cities in the province as the main links. 

 

 
 

Figure 8  City links with an advantageous connectivity index (RSL) in the intercity travel network for weekdays 
and Golden Week 

5  Community clusters of cities 

5.1  Community clusters 

Based on the Infomap algorithm analysis, we visualized the communities of the intercity 
travel network for the two periods, and a total of 22 communities were obtained. For each 
period, the communities were reordered to reflect the hierarchical tendencies in the results. 
Communities were labeled by simply referring to what seemed to be their overriding re-
gional geography. Figure 9 shows an alluvial diagram summarizing the changes in the inter-
city travel network between the two periods. According to the characteristics of geographical 
agglomeration, the communities of the two periods can by divided into cross-regional com-
munities, neighboring communities composed of adjacent provinces, and single provincial 
communities. 

The formation of cross-regional communities is affected by the geographical proximity 
effect and space-jump effect to overcome distance friction. Specifically, the formation of 
cross-regional communities was driven by radiation from central cities such as Beijing, 
Shanghai, Guangzhou, and Shenzhen. 

On weekdays, a cross-regional community centered on Beijing and Shanghai was formed, 
including 62 cities, which can be further divided into five secondary communities: Heilong-
jiang–Jilin, Beijing–Tianjin–Hebei, Shanghai–Zhejiang, Chongqing, and Hubei. The cross-  
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Figure 9  Divisions and changes of community structure for weekdays and Golden Week 
Notes: (1) Different bars represent different communities and are arranged according to the PageRank value of the 
community city. The higher the PageRank value, the lower the position and the higher the importance and status 
of the community in the network. (2) The horizontal streamlines connecting different communities in the two 
periods indicate the changes of cities in each community between weekdays and Golden Week, and their width is 
directly proportional to the number of cities in each community. (3) To clearly show the changes in the communi-
ties between the two periods, the left panel highlights the changes between weekdays and Golden Week of the 
Beijing–Shanghai community and the Guangzhou–Shenzhen community, while the right panel highlights the 
changes in the other communities. 

 

regional community with Guangzhou and Shenzhen as its core cities included 40 cities, 
which were divided into two secondary communities of Guangdong and Henan. The Bei-
jing–Shanghai community and the Guangzhou–Shenzhen community are located in the Bei-
jing–Guangzhou, Beijing–Shanghai, Beijing–Harbin, and Shanghai–Chengdu riverside axial 
regions and were highly coupled with the national development axes, including the coastal 
area, Beijing–Harbin, Beijing–Guangzhou, and the Yangtze riverside corridor. 

During Golden Week, the Beijing–Shanghai community still existed, but the number of 
cities included in it was reduced from 62 to 27, including three secondary communities, Bei-
jing–Tianjin–Hebei, Shanghai–Zhejiang, and Chongqing. A cross-regional community in-
cluding 28 cities with Harbin, Changchun, and Shenyang as its core cities was formed in 
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northeastern China. The Guangzhou–Shenzhen cross-regional community has dissolved into 
the two provincial communities of Guangdong and Henan. 

The neighboring communities were composed of cities from neighboring provinces that 
are geographically adjacent and within the hinterland of the core city. During weekdays, a 
community with Chengdu as its core city was formed, covering Sichuan and Tibet, including 
28 cities. A community with Urumqi as its core city was formed, covering Xinjiang and the 
western region of the adjacent Gansu province, including 29 cities. A community with Nan-
jing and Suzhou as its core cities was formed, covering Jiangsu and the eastern part of the 
adjacent Anhui province, including 17 cities. A community with Xi’an as its core city was 
formed, covering Shaanxi and Qingyang of Gansu, including 11 cities. During Golden Week, 
a community with Lanzhou and Xining as its core cities was formed, covering Gansu, 
Qinghai, and Naqu in Tibet, including 22 cities. A community with Yinchuan as its core city 
was formed, covering Ningxia and Alashan of Inner Mongolia, including six cities. Com-
pared with weekdays, the scope of the community with Nanjing and Suzhou as its core cities 
further expanded in Golden Week to cover Jiangsu and Anhui provinces, including 29 cities, 
and the community with Xi’an as its core city still existed, covering Shaanxi and Qingyang 
in the adjacent Gansu province. 

In addition, the number of communities jointly formed by cities located close to each 
other and within the same provincial administrative region was the largest, specifically 16 
and 17 for weekdays and Golden Week, respectively. The provincial communities remained 
stable during the two periods, including the Shandong group with Jinan and Qingdao as its 
core, and the Hainan community with Haikou and Sanya as its core cities. 

5.2  Discussion 

The formation of each community and its change between the two periods is influenced by a 
variety of factors, including geographical proximity, administrative divisions (cul-
tural-policy proximity), travel distance, and travel purposes. 

Geographical proximity determines the possibility of intercity interaction within a region. 
The closer the location, the greater the degree of intercity interaction as well as the possibil-
ity of being in the same community. For example, among the 22 communities of the two 
periods, provincial communities were the largest grouping, accounting for 72.73% and 
77.27% of the total for the two periods, respectively. It is difficult for cities located in the 
border areas of provinces to be driven by the radiation of the central cities because they are 
geographically far from the central cities of their associated provinces. These cities attract 
people from the economic centers of adjacent provinces in their geographic locations and 
have strong interactions, thus forming neighboring communities. Administrative divisions 
(cultural-policy proximity) are also the main factors for the formation of provincial commu-
nities. Cultural customs, management policies, resource allocation, factor mobility, and other 
aspects within the same administrative region are inherently convenient, making the links 
between cities in one province much greater than those between provinces, while provincial 
capitals and major central cities in a province assume the status of hubs for inter-provincial 
links. 

Travel distance directly affects the spatial coverage of intercity interactions. The further 
the travel distance is, the greater the possibility of interaction between distant cities and thus 
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the greater the possibility of forming a cross-regional community. The average daily travel 
distance during Golden Week was significantly lower than that during weekdays (Figure 10). 
The average travel distance on weekdays and Golden week are 1325 km and 552 km, re-
spectively. Intercity links that only occurred on weekdays were mainly inter-regional links, 
with an average travel distance of 1324 km, while intercity links that only occurred during 
Golden Week were mainly short-distance intercity links with an average travel distance of 
629 km. During the weekdays, the long travel distance formed a cross-regional community 
with Beijing–Shanghai as its core and a cross-regional community with Guang-
zhou–Shenzhen as its core. The decrease in travel distance also led to the formation of a 
cross-regional community with Harbin, Changchun, and Shenyang as its core cities, which is 
consistent with the findings of Xu et al. (2017). 

 

 
 

Figure 10  Comparison of intercity travel distance between weekdays and Golden Week 

 
There are significant differences in the purpose of travel on weekdays and holidays. Most 

of the intercity trips that take place on weekdays are mainly business trips and commuting 
trips between major central cities, and between cities in the upper and lower reaches of the 
industrial chain. Therefore, with the background of the space–time compression brought 
about by the development of high-speed transport, business travel on weekdays presented a 
cross pattern between distant national central cities (along the Beijing–Guangzhou– Shenz-
hen, Beijing–Shanghai, and Shanghai–Chengdu–Chongqing routes) and a network pattern 
between the inner and outer central cities within urban agglomerations (Shenzhen– Dong-
guan, Guangzhou–Foshan, and Guangzhou–Shenzhen of the Pearl River Delta city group). 
Most of the intercity trips that take place during holidays (such as Golden Week) are leisure 
and family visits. As noted earlier, 593 million tourists were received nationwide during the 
National Day Golden Week in 2016. Nearly half of the people in China chose to travel, 
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travel, which directly resulted in the daily average intercity travel scale during Golden Week 
being significantly higher than that on weekdays. At the same time, Sanya, Dali, Shanghai, 
Hangzhou, Xi’an, Xiamen, Beijing, Chengdu, Nanjing, and Guangzhou became the top-10 
tourist-destination cities. Leisure and family visits mainly took place between a central city 
and peripheral secondary cities within its hinterland, showing a radial structure dominated 
by short distances (Figures 1, 6 and 9). 

6  Conclusion 

This paper provides a systematic analysis on the temporal heterogeneity in mapping intercity 
travel network. Using the migration data obtained from the website of Tencent Location Big 
Data in China for weekdays (April 11–15, 2016) and National Golden Week (October 1–7, 
2016), this paper explored spatial patterns in China’s intercity travel network and disclose 
the differentiated patterns among weekdays and hoilday. Main findings of this paper include:  

The total relative volume of the daily average flow during Golden Week was notably 
higher than that during the weekdays, but the travel distance was clearly lower. On week-
days, the intercity network formed a rhombic dominant-link structure with Beijing, Shanghai, 
Guangzhou, Shenzhen, Chengdu, and Chongqing as core cities. During Golden Week, the 
intercity travel network showed a significant proximity effect. 

Patterns of network agglomeration during the two periods are of hierarchies and regional 
tendencies. Under the combined effects of the geographical proximity effect, administrative 
division (cultural-policy proximity), travel distance, travel purposes, and other factors, three 
types of communities formed: cross-regional communities, neighboring communities, and 
provincial communities. With the increasing travel volume and the popularity of 
shorter-distance travel during Golden Week, the influence of national hub cities significantly 
declined, while regional and local hubs taking dominant positions. 

The level of economic development of a city is directly related to the scale of its centrality, 
which spatially decreased from east to west. The space–time compression effect brought 
about by the development of high-speed transport plays an important role in expanding tra-
vel distances and activity space. 

Due to the daily trips of a large number of users who are not connected to the Tencent 
platform cannot be recorded, and most of trips are disassembled so that users can not iden-
tify the real OD travel, the results of this paper inevitably have some limitations. Moreover, 
the characteristics of intercity travel network of weekdays and holidays is not the same as 
the characteristics of intercity travel network dominated by business flows and tourism 
flows. Seeking the data acquired from questionnaire, ticketing information and other survey 
data would be valuable for future exploration of the formative mechanism of intercity travel 
network. 
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